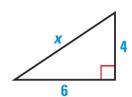

9.1 The Pythagorean Theorem


Pythagorean Theorem

In a _____ triangle, ____ where a and b are the length of the ____ and c is the length of the

Find the value of x

Pythagorean Triples

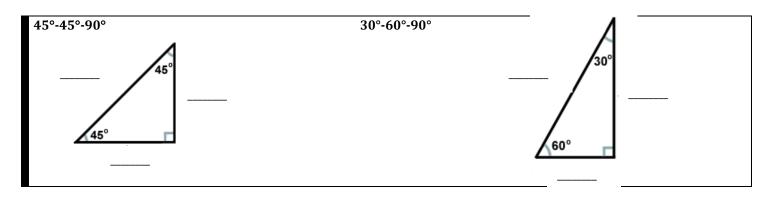
A set of _____ positive integers that satisfy the _____ Theorem

Converse of the Pythagorean Theorem

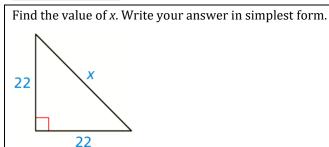
If ______ where *a* and *b* are the length of the _____ sides and *c* is the length of the _____ side, then it is a _____ triangle.

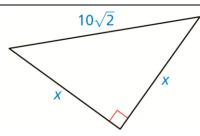
Tell whether a triangle with the given sides is a right triangle.

4, $4\sqrt{3}$, 8

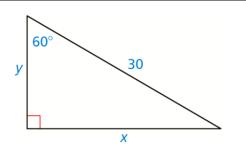

Geometry 9.1 Name: _____

If <i>c</i> is the	_ side and	
$c^2 < a^2 + b^2 \rightarrow $ _	triangle	
$c^2 = a^2 + b^2 \rightarrow _$	triangle	
$c^2 > a^2 + b^2 \rightarrow _$	triangle	


Show that the segments with lengths 3, 4, and 6 can form a triangle				
Classify the triangle as <i>acute</i> , <i>right</i> or <i>obtuse</i> .				
classify the triangle as deate, right of obtase.				

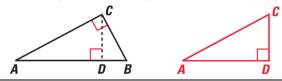

Assignment: 452 #2, 4, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 43, 45, 48, 49, 53 = 20 total

9.2 Special Right Triangles

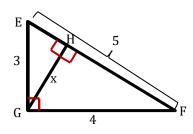


If you have another $45^{\circ}-45^{\circ}-90^{\circ}$ or $36^{\circ}-60^{\circ}-90^{\circ}$ triangle, then use the fact that they are _____ and use the _____ sides.

Find the values of x and y. Write your answers in simplest form.



9.3 Similar Right Triangles


Right Triangle Similarity Theorem

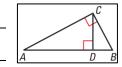
If the ______ is drawn to the _____ of a right triangle, then the two triangles formed are _____ to the _____ triangle and to _____ .

 Δ CBD $\sim \Delta$ ABC, Δ ACD $\sim \Delta$ ABC, Δ CBD $\sim \Delta$ ACD

Identify the similar triangles. Then find x.

Geometric Mean

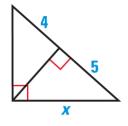
The geometric mean of two positive numbers ____ and ___ is the positive number that satisfies $\frac{a}{x} = \frac{x}{b}$. So,

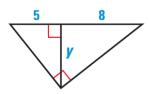

Find the geometric mean of 8 and 10. $\,$

Geometric Mean (Altitude) Theorem

If the altitude is drawn to the hypotenuse of a right triangle, then the ______ is the _____ of

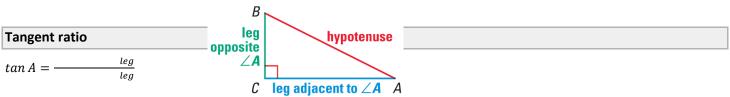
the two _____ of the ____. $CD = \sqrt{AD \cdot DB}$

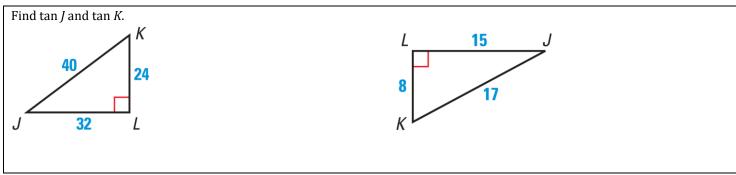


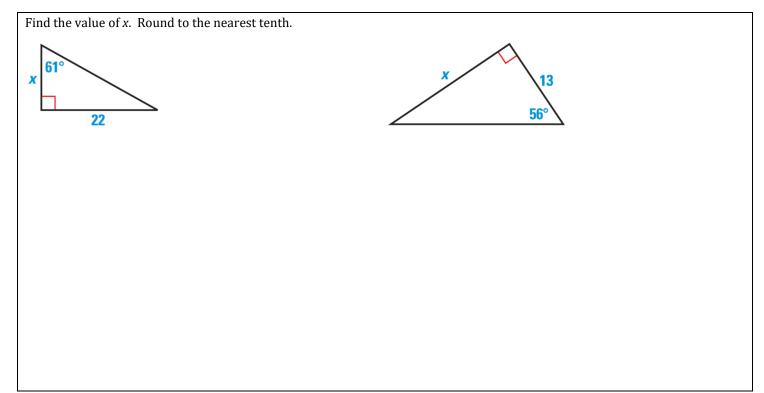


Geometric Mean (Leg) Theorem

If the altitude is drawn to the hypotenuse of a right triangle, then each ______ is the ______ of the _____ of the _____ adjacent to that leg. $AC = \sqrt{AB \cdot AD} \text{ and } BC = \sqrt{AB \cdot DB}$

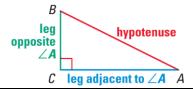

Find the value of x or y.





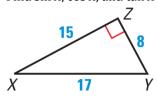
Assignment: 466 #2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 27, 30, 32, 36, 43, 47, 48, 49, 50 = 20 total

9.4 The Tangent Ratio


Assignment: 473 #2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 24, 25, 29, 30, 32 = 20 total

9.5 The Sine and Cosine Ratios

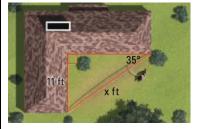
Sine and Cosine Ratios


$$sin A = \frac{leg}{leg}$$

$$\cos A = \frac{\log}{\tan A} = \frac{\log}{\log}$$

S O H C A H T O A

Find sin X, cos X, and tan X


Sine of an angle = cosine of the complement

$$\sin A = \cos(90^{\circ} - A) = \cos B$$

$$\cos A = \sin(90^{\circ} - A) = \sin B$$

Write cos 68° in terms of sine.

Find the length of the dog run (x).

Geometry 9.5		Name:		
Angle of Elevation and Depression				
Both are measured from the		Angle of depression		
Since they are measured to	lines, they are	Angle of elevation		
The angle of elevation of a plane as seen from the airport is 50°. If the plane's 1000 ft away, how high is plane?				

Assignment: 480 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 27, 28, 30, 35, 38, 41, 44, 45, 48 = 20 total

9.6 Solving Right Triangles

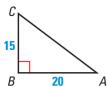
Solve a Triangle

Solve a triangle means to find ______ the unknown _____ and _____.

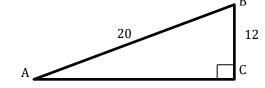
- Can be done for a _____ triangle if you know
 - 0 _____
 - 0
- Use _____, ____, _____ Theorem, and _____ Theorem

Inverse Trigonometric Ratios

Used to find measures of ______ when you know the _____.


 sin^{-1} — $= \theta$

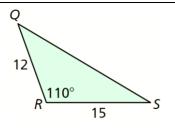
 cos^{-1} = θ


 tan^{-1} — = θ

Find $m \angle D$ to the nearest tenth if $\sin D = 0.54$

Find $m \angle C$ to the nearest tenth.

Solve a right triangle that has a 12-inch leg and a 20-inch hypotenuse.

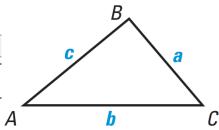


Assignment: 487 #2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 33, 34, 35, 39 = 20 total

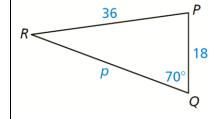
9.7A Law of Sines

Area of a Triangle

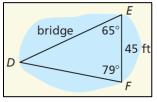
Find the area of the triangle.


Tangent, Sine, and Cosine are only for ______ triangles Law of Sines and Law of Cosines are for _____ triangle

Law of Sines


$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Used if you know

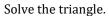

- •
- ____
- ____

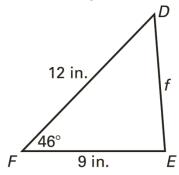
Solve the triangle.

A surveyor makes the measurements shown to determine the length of a walking bridge to be built across a pond in a city park. Find the length of the bridge.

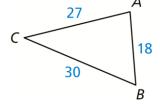
Assignment: 495 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20 = 10 total

9.7B Law of Cosines

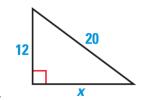

Law of Cosines

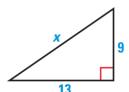

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

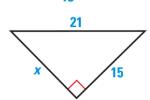

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Use when you know


Solve the triangle.

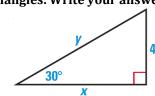

Assignment: 495 #22, 24, 26, 28, 32, 56, 57, 58, 59, 64 = 10 total

Geometry Chapter 9 Review

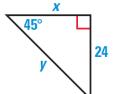

Find the value of *x*. Write your answer in simplest radical form.

1.

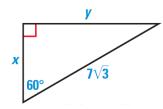
2.


3

Classify the triangle as acute, right, or obtuse.

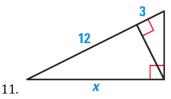

4. $5, 15, 5\sqrt{10}$

5. 4.3, 6.7, 8.2


Find the value of each variable using the special right triangles. Write your answer in simplest radical form.

6.

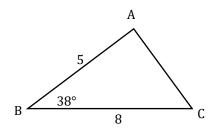
7.



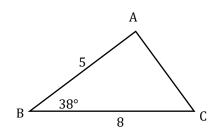
8.


9. What is the geometric mean of 2 and 21?

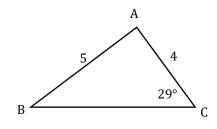
Find the exact value of *x*. (Use fractions and simplest radical form.)



Solve the right triangle. Round your answers to the nearest tenth.



Find the area of ΔABC . Round to the nearest tenth if necessary.



15.

Solve the triangle. Round to the nearest tenth.

16.

17.

18. The length of a hill in your neighborhood is 2000 feet. The height of the hill is 750 feet. What is the angle of elevation of the hill?

Answers

- 1. 16
- 2. $5\sqrt{10}$
- 3. $6\sqrt{6}$
- 4. Right
- 5. Obtuse
- 6. $4\sqrt{3}$; 8
- 7. 24; $24\sqrt{2}$
- 8. $\frac{7\sqrt{3}}{2}$; $\frac{21}{2}$
- 9. $\sqrt{42}$
- 10. 10
- 11. $6\sqrt{5}$
- 12. $A \approx 24.4^{\circ}, C \approx 65.6^{\circ}, AC \approx 12.1$
- 13. $D \approx 54.1^{\circ}, F \approx 35.9^{\circ}, EF \approx 7.4$
- 14. $G = 36.8^{\circ}, GH \approx 18.7, GJ \approx 23.4$
- 15. 12.3
- 16. $A = 104.8^{\circ}$, b = 5.1, $C = 37.2^{\circ}$
- 17. a = 8.1, $A = 128.2^{\circ}$, $B = 22.8^{\circ}$
- 18. About 22°